Обзор infinix zero x pro: непохожий на других
Содержание:
- Примеры линейных уравнений
- Как решать простые уравнения
- Решение уравнений и неравенств
- Действия над комплексными числами
- Пояснения к калькулятору
- Вычисление пределов функций
- Решение интегралов
- Понятие уравнения
- Вычисление выражений с логарифмами
- Приведение к одинаковому основанию
- Правила ввода функций
- Какие бывают виды уравнений
- Выделение устойчивого выражения
- Почему решение на английском языке?
- Понятие графика функции
- Замена переменной
- Определение показательного уравнения
- Упрощение выражений, раскрытие скобок, разложение многочленов на множители
- Понятие функции
- Исследование функции
- Методы решения показательных уравнений
- Приведение к одинаковой степени
Примеры линейных уравнений
Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!
Пример 1. Как правильно решить уравнение: 6х + 1 = 19.
Решаем так:
- Перенести 1 из левой части в правую со знаком минус.
6х = 19 — 1
- Выполнить вычитание.
6х = 18
- Разделить обе части на общий множитель, то есть 6.
х = 3
Ответ: 3.
Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.
Решаем так:
- Раскрыть скобки
5х — 15 + 2 = 3х — 2 + 2х — 1
- Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.
5х — 3х — 2х = — 12 — 1 + 15 — 2
- Приведем подобные члены.
0х = 0
Ответ: х — любое число.
Пример 3. Решить: 4х = 1/8.
Решаем так:
- Найти неизвестную переменную.
х = 1/8 : 4
х = 1/12
Ответ: 1/12 или 0,83. О десятичных дробях можно почитать здесь.
Пример 4. Решить: 4(х + 2) = 6 — 7х.
Решаем так:
- 4х + 8 = 6 — 7х
- 4х + 7х = 6 — 8
- 11х = −2
- х = −2 : 11
- х = — 0, 18
Ответ: — 0,18.
Пример 5. Решить:
Решаем так:
- 3(3х — 4) = 4 · 7х + 24
- 9х — 12 = 28х + 24
- 9х — 28х = 24 + 12
- -19х = 36
- х = 36 : (-19)
- х = — 36/19
Ответ: 1 17/19.
Пример 6. Как решить линейное уравнение: х + 7 = х + 4.
Решаем так:
- Раскрыть скобки
5х — 15 + 2 = 3х — 2 + 2х — 1
- Сгруппировать в левой части неизвестные члены, в правой — свободные члены:
х — х = 4 — 7
- Приведем подобные члены.
0 * х = — 3
Ответ: нет решений.
Пример 7. Решить: 2(х + 3) = 5 — 7х..
Решаем так:
- 2х + 6 = 5 — 7х
- 2х + 6х = 5 — 7
- 8х = −2
- х = −2 : 8
- х = — 0,25
Ответ: — 0,25.
Как решать простые уравнения
Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.
1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.
Для примера рассмотрим простейшее уравнение: x+3=5
Начнем с того, что в каждом уравнении есть левая и правая часть.
Перенесем 3 из левой части в правую и меняем знак на противоположный.
Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.
Решим еще один пример: 6x = 5x + 10.
Как решаем:
- Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.
6x −5x = 10
- Приведем подобные и завершим решение.
x = 10
Ответ: x = 10.
2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.
Применим правило при решении примера: 4x=8.
При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.
Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.
Разделим каждую часть на 4. Как это выглядит:
Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:
Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12
Как решаем:
- Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.
−4x = 12 | :(−4)
x = −3
Ответ: x = −3.
Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах
Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.
Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.
Алгоритм решения простого линейного уравнения |
---|
|
Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.
А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.
Решение уравнений и неравенств
Математический калькулятор может решать уравнения и неравентства относительно переменной «x». Если есть необходимость найти другую переменную, например «y», то следует просто поменять их местами в выражении. Ввод переменных «x»,»y»,»z» производится в группе xyz нажатием соответствующих кнопок x, y, z.
Примеры решений уравнений и неравенств:
$$\frac{5}{12}+\frac{x}{6}=\frac{x}{4}+\frac{1}{3}$$ (решить уравнение)
$$x^2+12x+36=0$$ (решить уравнение)
$$\left(x+8\right)^2=x^2+8$$ (решить уравнение)
$$\left(x^2+\frac{1}{x^2}\right)+\left(x+\frac{1}{x}\right)=4$$ (решить уравнение)
$$\frac{19-x^2-4x}{49-x^2}(решить неравенство)
$$\frac{x}{3}+\frac{2x-1}{5}>2x-\frac{1}{15}$$ (решить неравенство)
$$\frac{\left(x-1\right)^2\left(x+7\right)\left(x+3\right)^3}{x^2+6x+9}\ge 0$$ (решить неравенство)
Действия над комплексными числами
Онлайн калькулятор имеет функционал для работы с комплексными числами (операции сложения, вычитания, умножения, деления, возведения в степень и пр.). Комплексное число обзначается символом «i» и вводится с помощью групповой кнопки xyz и кнопки i
Примеры операций с комплексными числами:
$$\frac{\left(1+i\right)\left(3+i\right)}{3-i}-\frac{\left(1-i\right)\left(3-i\right)}{3+i}$$ (найти разность комплексных чисел)
$$\left(1-i\right)^3+\left(1+i\right)^3$$ (найти сумму комплексных чисел)
$$\left(-2+3i\right)\left(5+4i\right)$$ (найти произведение комплексных чисел)
$$\frac{-5-6i}{-6i}$$ (найти частное комплексных чисел)
$$\left(-2+2i\right)^9$$ (выполнить возведение комплексного числа в степень)
$$\frac{\left(-7-8i\right)i^7}{\left(4-5i\right)\left(-3+i\right)}-\frac{4+4i}{-2-5i}$$ (выполнить действия над комплексными числами)
Пояснения к калькулятору
- Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку ↵.
- Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками ← и →.
- ⌫ — удалить в поле ввода символ слева от курсора.
- C — очистить поле ввода.
- При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
- Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½, ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо → и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши ← и ввести число.
- Ввод числа в n-ой степени и квадратного корня прозводится кнопками ab и √ соответственно. Завершить ввод значения в степени или в корне можно клавишей →.
Вычисление пределов функций
Предел функции задается последовательным нажатием групповой кнопки f(x) и функциональной кнопки lim.
Примеры решений пределов:
$$\lim _{x\to -12}\left(\frac{x^3+1728}{x^2+18x+72}\right)$$ (найти предел функции)
$$\lim _{x\to 0}\left(\left(1-2x^2\right)^{\cot ^2\left(x\right)}\right)$$ (найти предел функции)
$$\lim _{x\to -1}\left(\frac{2x^2-3x-5}{1+x}\right)$$ (решить предел функции)
$$\lim _{x\to 0}\left(\frac{e^{\sin \left(4x\right)}-e^{\sin x}}{\log \left(1+4x\right)}\right)$$ (вычислить предел функции)
$$\lim _{x\to \infty }\left(\sqrt{3x^2+\sqrt{x^4+4x^3}}-2x\right)$$ (вычислить предел)
$$\lim _{x\to 1}\left(\frac{\left(2x^2+3\right)^{3x}}{2x^2-4^{\left(x+1\right)}}\right)$$ (решить предел функции)
Решение интегралов
Онлайн калькулятор предоставляет инструменты для интегрирования функций. Вычисления производятся как с неопределенными, так и с определенными интегралами. Ввод интегралов в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:∫ f(x) — для неопределенного интеграла;ba∫ f(x) — для определенного интеграла.
В определенном интеграле кроме самой функции необходимо задать нижний и верхний пределы.
Примеры вычислений интегралов:
$$\int \left(\frac{x^4}{x^3-6x^2+11x-6}\right)dx$$ (найти интеграл функции)
$$\int \left(\sqrt{x\sqrt{x\sqrt{x}}}\right)dx$$ (решить интеграл)
$$\int \left(\left(x^2+3x+5\right)\cos 2x\right)dx$$ (вычислить интеграл)
$$\int \left(\frac{x+\arccos ^2\left(3x\right)}{\sqrt{1-9x^2}}\right)dx$$ (решить интеграл)
$$\int _1^{e^3}\left(\frac{1}{x\sqrt{1+\log \left(x\right)}}\right)dx$$ (найти интеграл функции)
$$\int _{\frac{\pi }{6}}^{\frac{\pi }{3}}\left(\sin 6x\sin 7x\right)dx$$ (решить интеграл)
$$\int _{+\infty }^{-\infty }\left(\frac{1}{\left(x^2+1\right)\left(x^2+4\right)}\right)dx$$ (решить интеграл)
$$\int _1^2\left(x^2+\frac{1}{x}+\frac{1}{x^3}\right)dx$$ (вычислить интеграл)
Понятие уравнения
Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.
В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство. |
Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.
Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все возможные корни или убедиться, что их нет.
Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.
Вычисление выражений с логарифмами
В калькуляторе кнопкой loge(x) возможно задать натуральный логарифм, т.е логарифм с основанием «e»: loge(x) — это ln(x). Для того чтобы ввести логарифм с другим основанием нужно преобразовать логарифм по следующей формуле: $$\log_a \left(b\right) = \frac{\log \left(b\right)}{\log \left(a\right)}$$ Например, $$\log_{3} \left(5x-1\right) = \frac{\log \left(5x-1\right)}{\log \left(3\right)}$$
Примеры решений выражений с логарифмами:
$$\log _3\left(5x-1\right)=2$$ преобразуем в $$\frac{\log \left(5x-1\right)}{\log \left(3\right)}=2$$ (решить уравнение)
$$\log _2\left(x\right)=2\log _x\left(2\right)-1$$ преобразуем в $$\frac{\log \left(x\right)}{\log \left(2\right)}=2\cdot \frac{\log \left(2\right)}{\log \left(x\right)}-1$$ (найти x в уравнении)
Приведение к одинаковому основанию
Весомую часть уравнений вида ах = b (при а и b 0) можно решить, превратив b в определенную степень числа a. Именно это мы сделали в примере выше, получив одинаковые основания. Главная трудность в том, чтобы найти у этих чисел общий множитель.
Если у нас есть одинаковые основания, но разные показатели степени, то при умножении чисел степени складываются, а при делении — вычитаются. |
Пример 1
Рассмотрим еще одно показательное уравнение с корнем.
(1/642)-х = √1/8
Мы знаем, что у 64 и 8 есть общий множитель — это 2. Попробуем использовать это, и тогда 642 = 212, а 8 = 23.
(1/212)-х = √1/23
1/2-12х = 1/22/3
(1/2)-12х = (1/2)3/2
-12х = 3/2
х = -1/8
Пример 2
В этом примере показательного уравнения нужно будет отдельно преобразовать каждую составляющую.
(0,5)х2 × 4х+1 = 64-1
Найдем общее основание показательных функций:
0,5 = 1/2 = 2-1
4 = 22
64 = 26
В результате у нас получается:
(2-1)х2 × (22)х+1 = (26)-1
2-х2 × 22х+2 = 2-6
2-х2+2х+2 = 2-6
-х2 + 2х + 2 = -6
х2- 2х — 8 = 0
Здесь у нас будет два корня: -2 и 4.
Правила ввода функций
Знаки операций:+—*^Список функций:
Функция | Описание | Пример ввода | Результат ввода |
---|---|---|---|
pi | Число \(\pi\) | pi | $$ \pi $$ |
e | Число \(e\) | e | $$ e $$ |
e^x | Степень числа \(e\) | e^(2x) | $$ e^{2x} $$ |
exp(x) | Степень числа \(e\) | exp(1/3) | $$ \sqrt{e} $$ |
|x|abs(x) | Модуль (абсолютное значение) числа \(x\) | |x-1|abs(cos(x)) | \( |x-1| \)\( |\cos(x)| \) |
sin(x) | Синус | sin(x-1) | $$ sin(x-1) $$ |
cos(x) | Косинус | 1/(cos(x))^2 | $$ \frac{1}{cos^2(x)} $$ |
tg(x) | Тангенс | x*tg(x) | $$ x \cdot tg(x) $$ |
ctg(x) | Котангенс | 3ctg(1/x) | $$ 3 ctg \left( \frac{1}{x} \right) $$ |
arcsin(x) | Арксинус | arcsin(x) | $$ arcsin(x) $$ |
arccos(x) | Арккосинус | arccos(x) | $$ arccos(x) $$ |
arctg(x) | Арктангенс | arctg(x) | $$ arctg(x) $$ |
arcctg(x) | Арккотангенс | arcctg(x) | $$ arcctg(x) $$ |
sqrt(x) | Квадратный корень | sqrt(1/x) | $$ \sqrt{\frac{1}{x}} $$ |
root(n,x) | Корень степени nroot(2,x) эквивалентно sqrt(x) | root(4,exp(x)) | $$ \sqrt{ e^{x} } $$ |
x^(1/n) | Корень степени nx^(1/2) эквивалентно sqrt(x) | (cos(x))^(1/3) | $$ \sqrt{cos(x)} $$ |
ln(x)log(x)log(e,x) | Натуральный логарифм (основание — число e) | 1/ln(3-x) | $$ \frac{1}{ln(3-x)} $$ |
log(10,x) | Десятичный логарифм числа x | log(10,x^2+x) | $$ log_{10}(x^2+x) $$ |
log(a,x) | Логарифм x по основанию a | log(3,cos(x)) | $$ log_3(cos(x)) $$ |
sh(x) | Гиперболический синус | sh(x-1) | $$ sh(x-1) $$ |
ch(x) | Гиперболический косинус | ch(x) | $$ ch(x) $$ |
th(x) | Гиперболический тангенс | th(x) | $$ th(x) $$ |
cth(x) | Гиперболический котангенс | cth(x) | $$ cth(x) $$ |
Какие бывают виды уравнений
Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.
Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа.
Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.
Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.
Числовой коэффициент — число, которое стоит при неизвестной переменной.
Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:
- кубические
- уравнение четвёртой степени
- иррациональные и рациональные
- системы линейных алгебраических уравнений
Выделение устойчивого выражения
В предыдущих примерах мы преобразовывали разные виды показательных уравнений путем разложения многочленов на множители, потому что хотели найти способ решения — получить одинаковые основания или выделить переменную, которую можно заменить. Так вот, когда мы выносим некий множитель за скобку или заменяем переменную, пытаясь упростить уравнение — это действие по сути и является выделением устойчивого выражения.
Устойчивое выражение — это некий многочлен, содержащий переменную, который в скрытом виде присутствует во всех показательных функциях уравнения. Его можно вынести за скобки или обозначить новой переменной, чтобы упростить уравнение. |
Хорошая новость: так или иначе устойчивое выражение можно найти почти в любом трудном уравнении. Проблема только в том, чтобы научиться верно определять такое выражение, а этот навык появляется лишь с опытом.
Пример 1
3х+1 + 3х — 3х-2 = 35
В данном случае в качестве устойчивого выражения удобно взять 3х-2 как степень с наименьшим показателем. В итоге мы получим:
3х-2(33 + 32 — 1) = 35
3х-2 × 35 = 35
3х-2 = 1
Поскольку 1 равняется любое число в нулевой степени, мы можем записать:
3х-2 = 3
х — 2 = 0
х = 2
Пример 2
5 × 3-3х+1 + 3-3х+2 = 24
Для начала мы попробуем в левой части уравнения получить одинаковую степень: 3-3х+2 = 3-3х+1+1 = 3 × 3-3х+1.
Теперь у нас есть устойчивое выражение 3-3х+1, которое можно вынести за скобки, чтобы получить более простое уравнение:
3-3х+1(5+3) = 24
8 × 3-3х+1 = 24
3-3х+1 = 31
-3х + 1 = 1
х = 0
Почему решение на английском языке?
При решении этой задачи используется большой и дорогой модуль одного «забугорного» сервиса.
Решение он выдает в виде изображения и только на английском языке. Изменить это, к сожалению, нельзя. Ничего лучше мы найти не смогли.
Зато он выводит подробное и очень качественное решение в том виде в котором оно принято в высших учебных заведениях.
Единственное неудобство — на английском языке, но это не большая цена за качество.
Некоторые пояснения по выводу решения.
Вывод | Перевод, пояснение |
---|---|
Solve for x over the real numbers | Решить относительно х в действительных числах (бывают ещё комплексные) |
Multiply both sides by … | Умножаем обе части на … |
Equate exponents of … on both sides | Приравниваем степени … в обоих частях (с обоих сторон) |
Simplify and substitute … | Упрощаем и делаем подстановку … |
Bring … together using the commom denominator … | Приводим … к общему знаменателю … |
The left hand side factors into a product with two terms | Левая часть разбивается на множители как два многочлена |
Split into two equations | Разделяем на два уравнения |
Take the square root of both sides | Извлекаем квадратный корень из обоих частей |
Subtract … from both sides | Вычитаем … из обеих частей уравнения |
Add … to both sides | Прибавляем … к обоим частям уравнения |
Multiply both sides by … | Умножаем обе части уравнения на … |
Divide both sides by … | Делим обе части уравнения на … |
Substitute back for … | Обратная подстановка для … |
… has no solution since for all … | … не имеет решения для всех … |
Simplify the expression | Упрощаем выражение |
Answer | Ответ |
\(log(x)\) | Натуральный логарифм, основание — число e. У нас пишут \(ln(x)\) |
\(arccos(x)\) или \(cos^{-1}(x)\) | Арккосинус. У нас пишут \( arccos(x) \) |
\(arcsin(x)\) или \(sin^{-1}(x)\) | Арксинус. У нас пишут \( arcsin(x) \) |
\(tan(x)\) | Тангенс. У нас пишут \(tg(x) = \frac{sin(x)}{cos(x)}\) |
\(arctan(x)\) или \(tan^{-1}(x)\) | Арктангенс. У нас пишут \(arctg(x)\) |
\(cot(x)\) | Котангенс. У нас пишут \(ctg(x) = \frac{cos(x)}{sin(x)}\) |
\(arccot(x)\) или \(cot^{-1}(x)\) | Арккотангенс. У нас пишут \(arcctg(x)\) |
\(sec(x)\) | Секанс. У нас пишут также \(sec(x) = \frac{1}{cos(x)}\) |
\(csc(x)\) | Косеканс. У нас пишут \(cosec(x) = \frac{1}{sin(x)}\) |
\(cosh(x)\) | Гиперболический косинус. У нас пишут \(ch(x) = \frac{e^x+e^{-x}}{2} \) |
\(sinh(x)\) | Гиперболический синус. У нас пишут \(sh(x) = \frac{e^x-e^{-x}}{2} \) |
\(tanh(x)\) | Гиперболический тангенс. У нас пишут \(th(x) = \frac{e^x-e^{-x}}{e^x+e^{-x}} \) |
\(coth(x)\) | Гиперболический котангенс. У нас пишут \(cth(x) = \frac{1}{th(x)} \) |
Если вам что-то осталось не понятно обязательно напишите об этом в Обратной связи и мы дополним эту таблицу.
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика
Не обязательно делать чертеж на целый тетрадный лист, можно выбрать удобный для вас масштаб, который отразит суть задания.
Замена переменной
Этот способ решения показательных уравнений понадобится тем, кто не боится по-настоящему трудных задач. Ведь с помощью ввода новой переменной можно упростить даже самое сложное выражение. Его суть проста: мы заменяем «трудную» переменную на более простую и решаем уравнение, а после производим обратную замену. Главное — определить, какую именно переменную стоит заменить.
Пример
4x- 2x+1- 8 = 0
Очевидно, что в этом уравнении показательные функции легко привести к общему основанию: 4х = 22х, а 2х+1 = 2 × 2х.
22х — 2 × 2х — 8 = 0
Что-то напоминает. Если бы из этого выражения можно было волшебным образом убрать 2х, получилось бы обычное квадратное уравнение. Поэтому мы обозначим 2х новой переменной — допустим, y.
Если 2х = y, получается: у2- 2у — 8 = 0.
У такого уравнения есть два корня: у1 = 4, у2 = -2.
Проведем обратную замену: 2х = 4, 2х = -2.
Но мы знаем, что показательная функция в любом случае не может быть отрицательным числом, а значит, 2х = -2 корней не имеет. Следовательно, 2х = 4.
х = 2.
Пример 2
25х — 6 × 5х + 5 = 0
Если присмотреться к этому выражению, становится понятно, что у него много общего с квадратным уравнением. Введем новую переменную: 5х = у.
у2 — 6у + 5 = 0
Корни такого уравнения: 1 и 5.
Выполним обратную замену:
5х = 1, значит х = 0.
5х = 5, значит х = 1.
Определение показательного уравнения
Показательными называются уравнения с показательной функцией f(x) = aх. Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: aх = b, где a > 0, a ≠ 1. |
- разложение многочлена на множители;
- свойства степенной функции;
- решение квадратных уравнений.
Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.
С точки зрения геометрии показательной функцией называют такую: y = ax, где a > 0 и a ≠ 1
У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a
Это хорошо видно на рисунке ниже.
Важно знать
Показательная функция не может быть отрицательным числом, т. е
выражение у = ax при а ≤ 0 корней не имеет.
Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.
Свойства степеней
Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.
am x an |
am+n |
am:an |
am-n |
(a x b)n |
an x bn |
(a : b)n |
an : bn |
(an)m |
an x m |
a-n |
1/an |
(a/b)-n |
(b/a)n |
n√a |
a1/n |
Как видите, ничего нового здесь нет, все это проходят в 6–7 классе.
Упрощение выражений, раскрытие скобок, разложение многочленов на множители
Калькулятор позволяет произвести некоторые алгебраические преобразования с выражениями. Результат выводится в нескольких вариантах упрощения/разложения/раскрытия скобок и пр.
Примеры:
$$x^4+x^2a^2+a^4$$ (разложить на множители)
$$\frac{6x^3-24x^2}{6x^3}$$ (разложить на множители)
$$(5x-2y^2)(5x+2y^2)$$ (раскрыть скобки)
$$(a-b)(a+b)(a^2+b^2)(a^4+b^4)(a^8+b^8)$$ (раскрыть скобки)
$$\frac{a^3-8}{a^2+2a+4}$$ (раскрыть скобки)
$$\frac{\left(\frac{2a}{2a+b}-\frac{4a^2}{4a^2+4ab+b^2}\right)}{\left(\frac{2a}{4a^2-b^2}+\frac{1}{b-2a}\right)}+\frac{8a^2}{2a+b}$$ (упростить выражение)
$$\frac{1-\sin ^4\left(x\right)-\cos ^4\left(x\right)}{2\sin ^4\left(x\right)}+1$$ (упростить выражение)
$$\left(\sqrt{a}-\frac{a}{\sqrt{a}+1}\right)\cdot \frac{a-1}{\sqrt{a}}$$ (упростить выражение)
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ — наглядно.
- Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Исследование функции
Важные точки графика функции y = f(x):
- стационарные и критические точки;
- точки экстремума;
- нули функции;
- точки разрыва функции.
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
- Найти область определения функции.
- Найти область допустимых значений функции.
- Проверить не является ли функция четной или нечетной.
- Проверить не является ли функция периодической.
- Найти нули функции.
- Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
- Найти асимптоты графика функции.
- Найти производную функции.
- Найти критические точки в промежутках возрастания и убывания функции.
- На основании проведенного исследования построить график функции.
У нас есть отличные онлайн занятия по математике для учеников с 1 по 11 классы! Приходи на пробное занятие с нашими лучшими преподавателями! |
Методы решения показательных уравнений
Самые короткие и простые показательные уравнения решаются с помощью элементарной математики. Например:
4х = 64.
Требуется найти, в какую степень нужно возвести 4, чтобы получить 64.
4 × 4 × 4 = 64
43 = 64
Х = 3
Но как решать показательные уравнения вот такого вида: 3√128= 42х? Нужно немного повозиться с преобразованием этого выражения. Например, сделать так, чтобы либо основания, либо степенные показатели стали одинаковы. Для этого мы можем разложить 128 и 4. Вы ведь заметили, что у них есть общий множитель? Правильно, это 2.
3√128= 42х
3√27= (22)2x
27/3 = 24х
Теперь в нашем уравнении появились одинаковые основания, а значит, мы можем приравнять и степени.
4х = 7/3
х = 7/12
В данном случае мы используем один из алгоритмов решения показательных уравнений — привели обе части равенства к одинаковым основаниям. Дальше рассмотрим и другие методы.
Приведение к одинаковой степени
Не все показательные уравнения с разными основаниями можно решить предыдущим способом. Иногда проще преобразовать не основания, а показатели степени. Правда, пользоваться этим методом есть смысл только в том случае, когда мы имеем дело с умножением или делением.
При умножении чисел с разными основаниями, но одинаковыми степенными показателями можно перемножить только основания (степень останется прежней): axbx = (ab)x. |
Пример
52х-4 = 492-х
Общих множителей у левой и правой части уравнения нет и привести их к одинаковому основанию достаточно трудно. Поэтому стоит поработать с показателями степеней:
52х-4 = 492-х
52х-4 = 74-2х
52х-4 = (1/7)2х-4
352х-4 = 1
2х — 4 = 0
х = 2
Пример 2
2х-2 = 52-х
Нам нужно привести обе части уравнения к одинаковым степенным показателям, и для этого вначале попробуем преобразовать правую часть, используя свойство степенных функций.
2х-2 = 1/5х-2
Теперь умножим обе части на 52-х и придем к уравнению:
2х-2 × 52-х = 1
10х-2 = 1
10х-2 = 10
х — 2 = 0
х = 2